If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2700/r^2=7900
We move all terms to the left:
2700/r^2-(7900)=0
Domain of the equation: r^2!=0We multiply all the terms by the denominator
r^2!=0/
r^2!=√0
r!=0
r∈R
-7900*r^2+2700=0
We add all the numbers together, and all the variables
-7900r^2+2700=0
a = -7900; b = 0; c = +2700;
Δ = b2-4ac
Δ = 02-4·(-7900)·2700
Δ = 85320000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{85320000}=\sqrt{360000*237}=\sqrt{360000}*\sqrt{237}=600\sqrt{237}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-600\sqrt{237}}{2*-7900}=\frac{0-600\sqrt{237}}{-15800} =-\frac{600\sqrt{237}}{-15800} =-\frac{3\sqrt{237}}{-79} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+600\sqrt{237}}{2*-7900}=\frac{0+600\sqrt{237}}{-15800} =\frac{600\sqrt{237}}{-15800} =\frac{3\sqrt{237}}{-79} $
| 9000=70x+8250-55x | | 150=(1/2)a(5)^2 | | 9=x-24 | | 4x+6x-2x=56 | | 35/q=177 | | (3+4)x=14 | | -5x^2+25x-500=0 | | (2+4)x=30 | | (n+3)×2=14 | | 42×5=15(x-6) | | n×9=130 | | 42×5=(x-6)×15 | | 5/(x-6)=15/42 | | 0.4(x-7)=3(0.2x-1) | | 6x+7=3(2x−3) | | 1.28*x=50 | | 1.28xY=50 | | P(x)=4x^2-32x+68 | | 6t-5+5t=105(t=4;t=7;t=10) | | 55-111m=0 | | 2x+17=-4x+11 | | 10/6=x/5 | | 3(x–2)–5(2x–1)–2(3x+4)+10=0 | | 2/3b+4=-b+8 | | -3x-13=5x-63 | | (7x-1)/6=(6-2x+1)/6 | | 10y+2y=12 | | -6x-33=-11+22 | | 1234567890-7676767676776766767676767676767p=9p | | 6d-4567890=7 | | 17.1b−85.5=37.62 | | r+6/6=6 |